Опыты без взрывов: олово, свинец, алюминий, хром, никель, медь

О.Ольгин. Опыты без взрывов Металлы не очень удобны для опытов: эксперименты с ними требуют, как правило, сложного оборудования. Но некоторые опыты можно поставить и в домашней лаборатории. Начнем с олова . В хозяйственных магазинах бывают иногда палочки металлического олова для пайки. С таким маленьким слитком можно проделать эксперимент: взять оловянную палочку двумя руками и согнуть - раздастся отчетливый хруст . У металлического олова такая кристаллическая структура, что при изгибе кристаллики металла как бы трутся друг о друга, возникает хрустящий звук. Кстати, по этому признаку можно отличить чистое олово от оловянных сплавов - палочка из сплава при сгибании никаких звуков не издает. А сейчас попробуем добыть олово из пустых консервных банок, из тех самых, которые лучше не выбрасывать, а сдавать в утиль. Большинство банок изнутри луженые , т. е. они покрыты слоем олова, который защищает железо от окисления, а пищевые продукты - от порчи. Это олово можно извлечь и использовать повторно. Прежде всего пустую банку надо как следует очистить. Обычного мытья недостаточно, поэтому налейте в банку концентрированный раствор стиральной соды и поставьте ее на полчаса на огонь, чтобы моющий раствор прокипел как следует. Слейте раствор и промойте банку два-три раза водой. Теперь можно считать ее чистой. Нам понадобятся две-три батарейки для карманного фонаря, соединенные последовательно; можно, как говорилось выше, взять выпрямитель с трансформатором или аккумулятор на 9-12 В. Каким бы ни был источник тока, к положительному его полюсу присоедините консервную банку (внимательно следите, чтобы был хороший контакт - можно пробить в верхней части банки небольшое отверстие и вдеть в него провод). Отрицательный полюс соедините с каким-либо куском железа, например, с большим очищенным до блеска гвоздем. Опустите железный электрод в банку так, чтобы он не касался дна и стенок. Как его подвесить - придумайте сами, это нехитрая штука. Налейте в банку раствор щелочи - едкого натра обращаться крайне осторожно! ) или стиральной соды ; первый, вариант лучше, но требует предельной аккуратности в работе. Так как раствор щелочи еще не раз будет нужен для опытов, расскажем здесь, как его приготовить. Добавьте стиральную соду и прокипятите смесь. В результате реакции образуется едкий натр NaOH и карбонат кальция, т. е. мел, практически нерастворимый в воде. Значит, в растворе, который после охлаждения надо профильтровать, останется только щелочь. Но вернемся к опыту с консервной банкой. Вскоре на железном электроде начнут выделяться пузырьки газа , а олово с консервной банки станет понемногу переходить в раствор . Ну а если надо получить не раствор, содержащий олово, а сам металл? Что ж, и это возможно. Выньте из раствора железный электрод и замените его угольным. Тут вам вновь поможет старая, отслужившая свое батарейка, в цинковом стаканчике которой сеть угольный стержень. Извлеките его и соедините проводом с отрицательным полюсом вашего источника тока. На стержне при электролизе будет оседать губчатое олово, причем если напряжение подобрано правильно, то произойдет это довольно быстро. Правда, может случиться так, что олова с одной банки окажется маловато. Тогда возьмите еще одну банку, аккуратно нарежьте ее на кусочки специальными ножницами для металла и положите внутрь той банки, в которую налит электролит. Будьте внимательны: обрезки не должны касаться угольного стержня! Собранное на электроде олово можно переплавить. Отключите ток, достаньте угольный стержень с губчатым оловом, положите его в фарфоровую чашку или в чистую металлическую банку и подержите на огне. Вскоре олово сплавится в плотный слиток. Не дотрагивайтесь до него и до банки, пока они не остынут! Часть губчатого олова можно не переплавлять, а оставить для других опытов. Если растворить его в соляной кислоте - небольшими кусочками и при умеренном нагревании, - то получится раствор хлорида олова . Приготовьте такой раствор концентрацией примерно 7% и добавьте, помешивая, раствор щелочи чуть большей концентрации, около 10%. Сначала выпадет белый осадок, но вскоре он растворится в избытке щелочи. Вы получили раствор гидроксостанната натрия - тот самый, который образовался у вас вначале, когда вы начали растворять олово из банки. Но если так, то первую часть опыта - перевод металла из банки в раствор - можно уже не повторять, а приступить сразу ко второй его части, когда на электроде оседает металл. Это сэкономит вам немало времени, если вы захотите получить побольше олова из консервных банок. Свинец плавится еще легче, чем олово. В маленький тигель или в металлическую банку из-под гуталина поместите несколько дробинок и нагрейте на пламени. Когда свинец расплавится, осторожно снимите банку с огня, взяв ее за бортик большим надежным пинцетом или плоскогубцами. Расплав свинца вылейте в гипсовую или металлическую форму либо просто в песчаную лунку - так вы получите самодельное свинцовое литье. Если же и дальше прокаливать расплавленный свинец на воздухе, то через несколько часов на поверхности металла образуется красный налет - двойной оксид свинца ; под названием " свинцовый сурик " его часто использовали прежде для приготовления красок. Свинец , как и многие другие металлы, взаимодействует с кислотами, вытесняя из них водород . Но попробуйте положить свинец в концентрированную соляную кислоту - он в ней не растворится. Возьмите другую, заведомо более слабую кислоту - уксусную . В ней свинец хоть и медленно, но растворяется! Этот парадокс объясняется тем, что при взаимодействии с соляной кислотой образуется плохо растворимый хлорид свинца . Покрывая поверхность металла, он мешает дальнейшему его взаимодействию с кислотой. А вот ацетат свинца , который получается при реакции с уксусной кислотой , растворяется хорошо и не препятствует взаимодействию кислоты и металла. С алюминием мы поставим сначала два простых опыта, для которых вполне годится сломанная алюминиевая ложка. Поместите кусочек металла в пробирку с любой кислотой, хотя бы с соляной . Алюминий сразу же начнет растворяться, энергично вытесняя водород из кислоты - образуется соль алюминия А1С1 . Другой кусочек алюминия опустите в концентрированный раствор щелочи, например, каустической соды осторожно! ). И снова металл начнет растворяться с выделением водорода. Только на этот раз образуется другая соль, а именно: алюминат натрия . Оксид и гидроксид алюминия проявляют одновременно и основные, и кислотные свойства, т. е. они вступают в реакцию как с кислотами, так и со щелочами. Их называют амфотерными . Соединения олова , кстати, тоже амфотерны; проверьте это сами, если, конечно, вы уже извлекли олово из консервной банки. Существует правило: чем металл активнее, тем он скорее окисляется, подвергается коррозии . Натрий , например, вообще нельзя оставлять на воздухе, его хранят под керосином. Но известен и такой факт: алюминий гораздо активнее, чем, например, железо , однако железо быстро ржавеет, а алюминий, сколько его ни держи на воздухе и в воде, практически не изменяется. Что это - исключение из правила? Поставим опыт . Закрепите кусочек алюминиевой проволоки в наклонном положении над пламенем газовой горелки или спиртовки так, чтобы нагревалась нижняя часть проволоки. При 660 С этот металл плавится; казалось бы, можно ожидать, что алюминий начнет капать на горелку. Но вместо того чтобы плавиться, нагретый конец проволоки вдруг резко провисает. Вглядитесь получше, и вы увидите тонкий чехол, внутри которого находится расплавленный металл. Этот "чехол" - из оксида алюминия , вещества прочного и очень жаростойкого. Оксид тонким и плотным слоем покрывает поверхность алюминия и не дает ему дальше окисляться. Это его свойство используют на практике. Например, для плакирования металлов; на металлическую поверхность наносят тонкий алюминиевый слой, алюминий сразу же покрывается оксидом, который надежно предохраняет металл от коррозии . И еще два металла, с которыми мы поставим опыт,- хром и никель . В таблице Менделеева они стоят далеко друг от друга, но есть причина, чтобы рассматривать их вместе: и хромом и никелем покрывают металлические изделия, чтобы они блестели, не ржавели. Так, спинки металлических кроватей покрывают обычно никелем, автомобильные бамперы - хромом. А можно ли точно узнать, из какого металла сделано покрытие ? Попробуем провести анализ. Отколите кусочек покрытия от старой детали и оставьте его на воздухе на несколько дней, чтобы он успел покрыться пленкой оксида, а затем поместите в пробирку с концентрированной соляной кислотой обращаться с осторожностью! Кислота не должна попадать на руки и одежду! ). Если это был никель , то он сразу начнет растворяться в кислоте, образуя соль NiCl ; при этом будет выделяться водород. Если же блестящее покрытие из хрома , то первое время никаких изменений не будет и лишь потом металл начнет растворяться в кислоте с образованием хлорида хрома . Вынув этот кусочек покрытия из кислоты пинцетом, ополоснув его водой и высушив на воздухе, через два-три дня можно будет снова наблюдать тот же эффект. Объяснение: на поверхности хрома образуется тончайшая пленка оксида , которая препятствует взаимодействию кислоты с металлом. Однако и она растворяется в кислоте, правда, медленно. На воздухе хром вновь покрывается оксидной пленкой. А вот у никеля такой защитной пленки нет. Но в таком случае зачем же мы держали металлы на воздухе перед первым опытом? Ведь хром был уже покрыт слоем оксида! А затем, что покрыта была лишь наружная сторона, а внутренняя, обращенная к изделию, с кислородом воздуха в контакт не вступала. С медью можно поставить несколько любопытных опытов , поэтому посвятим ей особую главу. Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту , то жидкость окрасится в цвет, а поверхность металла вновь станет и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl . Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а налетом, и что это за налет? Попробуйте найти старый медный предмет , скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет . Значит, это диоксид углерода . В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь, оксид меди . Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: Сu ( дигидроксид-карбонат меди ). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода , и пары воды. Зеленый налет называют патиной . Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит . Обратим внимание на почерневшую медную проволоку . Нельзя ли вернуть ей первоначальный блеск без помощи кислоты? Налейте в пробирку аптечного нашатырного спирта , раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь , вода и азот . Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в . Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое ко

 
 
Hosted by uCoz