АЛЮМИНИЙ

химический элемент III группы периодической системы, атомный номер 13, относительная атомная масса 26,98. В природе представлен лишь одним стабильным нуклидом Al. Искусственно получен ряд радиоактивных изотопов алюминия, наиболее долгоживущий – Al имеет период полураспада 720 тысяч лет. В земной коре алюминия очень много: 8,6% по массе. Он занимает первое место среди всех металлов и третье среди других элементов (после кислорода и кремния). Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Как писал более 100 лет назад в своем классическом учебнике Основы химии Д.И.Менделеев , из всех металлов «алюминий есть самый распространенный в природе; достаточно указать на то, что он входит в состав глины, чтоб ясно было всеобщее распространение алюминия в коре земной. Алюминий, или металл квасцов (alumen), потому и называется иначе глинием, что находится в глине». Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH) . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень) (Na,K) , нефелин (Na,K) . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий. См. также БОКСИТЫ. , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки. Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978 в породах Сибирской платформы был обнаружен самородный алюминий – в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. Известно, что при нагревании галогенидов алюминия – хлорида, бромида, фторида они могут с большей или меньшей легкостью испаряться (так, AlCl возгоняется уже при 180° C). При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть – восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом. Название алюминия происходит от латинского alumen (род. падеж aluminis). Так называли квасцы, двойной сульфат калия-алюминия KAl(SO O), которые использовали как протраву при крашении тканей. Латинское название, вероятно, восходит к греческому «халмэ» – рассол, соляной раствор. Любопытно, что в Англии алюминий – это aluminium, а в США – aluminum. Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н.э., чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице. Эта легенда основана на рассказе Плиния Старшего , римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли». А ведь глина действительно содержит алюминий. Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н.э., сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки. Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия). Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века». По цвету чистый алюминий напоминает серебро, это очень легкий металл: его плотность всего 2,7 г/см . Легче алюминия только щелочные и щелочноземельные металлы (кроме бария), бериллий и магний. Плавится алюминий тоже легко – при 600° С (тонкую алюминиевую проволоку можно расплавить на обычной кухонной конфорке), зато кипит лишь при 2452° С. По электропроводности алюминий – на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. В таком же порядке изменяется и теплопроводность металлов. В высокой теплопроводности алюминия легко убедиться, опустив алюминиевую ложечку в горячий чай. И еще одно замечательное свойство у этого металла: его ровная блестящая поверхность прекрасно отражает свет: от 80 до 93% в видимой области спектра в зависимости от длины волны. В ультрафиолетовой области алюминию в этом отношении вообще нет равных, и лишь в красной области он немного уступает серебру (в ультрафиолете серебро имеет очень низкую отражательную способность). Чистый алюминий – довольно мягкий металл – почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз. Характерная степень окисления алюминия +3, но благодаря наличию незаполненных 3 р - и 3 d -орбиталей атомы алюминия могут образовывать дополнительные донорно-акцепторные связи. Поэтому ион Al с небольшим радиусом весьма склонен к комплексообразованию, образуя разнообразные катионные и анионные комплексы: AlCl , AlF , [Al(H , Al(OH) , Al(OH) , AlH и многие другие. Известны комплексы и с органическими соединениями. Химическая активность алюминия весьма высока; в ряду электродных потенциалов он стоит сразу за магнием. На первый взгляд такое утверждение может показаться странным: ведь алюминиевая кастрюля или ложка вполне устойчивы на воздухе, не разрушаются и в кипящей воде. Алюминий, в отличие от железа, не ржавеет. Оказывается, на воздухе металл покрывается бесцветной тонкой, но прочной «броней» из оксида, которая защищает металл от окисления. Так, если внести в пламя горелки толстую алюминиевую проволоку или пластинку толщиной 0,5–1 мм, то металл плавится, но алюминий не течет, так как остается в мешочке из его оксида. Если лишить алюминий защитной пленки или сделать ее рыхлой (например, погружением в раствор ртутных солей), алюминий тут же проявит свою истинную сущность: уже при комнатной температуре начнет энергично реагировать с водой с выделением водорода: 2Al + 6H . На воздухе лишенный защитной пленки алюминий прямо на глазах превращается в рыхлый порошок оксида: 2Al + 3O . Особенно активен алюминий в мелкораздробленном состоянии; алюминиевая пыль при вдувании в пламя моментально сгорает. Если смешать на керамической пластинке алюминиевую пыль с пероксидом натрия и капнуть на смесь водой, алюминий также вспыхивает и сгорает белым пламенем. Очень высокое сродство алюминия к кислороду позволяет ему «отнимать» кислород от оксидов ряда других металлов, восстанавливая их (метод алюминотермии). Самый известный пример – термитная смесь, при горении которой выделяется так много тепла, что полученное железо расплавляется: 8Al + 3Fe + 9Fe. Эта реакция была открыта в 1856 Н.Н.Бекетовым. Таким способом можно восстановить до металлов Fe , CoO, NiO, MoO , V , SnO , CuO, ряд других оксидов. При восстановлении же алюминием Cr , Nb , Ta , SiO , TiO , ZrO , B теплоты реакции недостаточно для нагрева продуктов реакции выше их температуры плавления. Алюминий легко растворяется в разбавленных минеральных кислотах с образованием солей. Концентрированная азотная кислота, окисляя поверхность алюминия, способствует утолщению и упрочнению оксидной пленки (так называемая пассивация металла). Обработанный таким образом алюминий не реагирует даже с соляной кислотой. С помощью электрохимического анодного окисления (анодирования) на поверхности алюминия можно создать толстую пленку, которую нетрудно окрасить в разные цвета. Вытеснение алюминием из растворов солей менее активных металлов часто затруднено защитной пленкой на поверхности алюминия. Эта пленка быстро разрушается хлоридом меди, поэтому легко идет реакция 3CuCl + 3Cu, которая сопровождается сильным разогревом. В крепких растворах щелочей алюминий легко растворяется с выделением водорода: 2Al + 6NaOH + 6Н (образуются и другие анионные гидроксо-комплексы). Амфотерный характер соединений алюминия проявляется также в легком растворении в щелочах его свежеосажденного оксида и гидроксида. Кристаллический оксид (корунд) весьма устойчив к действию кислот и щелочей. При сплавлении со щелочами образуются безводные алюминаты: Al O. Алюминат магния Mg(AlO – полудрагоценный камень шпинель, обычно окрашенный примесями в самые разнообразные цвета. Бурно протекает реакция алюминия с галогенами. Если в пробирку с 1 мл брома внести тонкую алюминиевую проволоку, то через короткое время алюминий загорается и горит ярким пламенем. Реакция смеси порошков алюминия и иода инициируется каплей воды (вода с иодом образует кислоту, которая разрушает оксидную пленку), после чего появляется яркое пламя с клубами фиолетовых паров иода. Галогениды алюминия в водных растворах имеют кислую реакцию из-за гидролиза: AlCl + HCl. Реакция алюминия с азотом идет только выше 800° С с образованием нитрида AlN, с серой – при 200° С (образуется сульфид Al ), с фосфором – при 500° С (об

 
 
Hosted by uCoz