Сварка алюминия и алюминиевых сплавов

→ → Алюминиевые сплавы используют в сварных конструкциях различного назначения. Основными достоинствами их как конструкционных материалов являются малая плотность, высокая удельная прочность, высокая коррозионная стойкость. Чистый алюминий, ввиду низкой прочности, для изготовления конструкций используют в отдельных случаях в химической, пищевой и электротехнической промышленности. Алюминий высокой чистоты применяют в отраслях новой техники, в том числе при производстве полупроводников. В качестве конструкционных материалов в основном используют полуфабрикаты из алюминиевых сплавов. По показателям отношения прочности и текучести к плотности высокопрочные алюминиевые сплавы значительно превосходят чугун, низкоуглеродистые и низколегированные стали, чистый титан и уступают лишь высоколегированным сталям повышенной прочности и сплавам титана. Алюминиевые сплавы разделяют на литейные и деформируемые по пределу растворимости элементов в твердом растворе. В сварных конструкциях в основном используют полуфабрикаты (листы, профили, трубы и др.) из деформируемых сплавов. Концентрация легирующих элементов деформируемых сплавов меньше предела растворимости, и при нагреве эти сплавы могут быть переведены в однофазное состояние, при котором обеспечивается их высокая деформационная способность. Большинство элементов, входящих в состав алюминиевых сплавов, обладает ограниченной растворимостью, изменяющейся с температурой. Это сообщает сплавам способность упрочняться термической обработкой. В связи с этим деформируемые сплавы разделяют на сплавы, не упрочняемые термической обработкой с концентрацией легирующих элементов ниже предела растворимости при 20 С), и сплавы, упрочняемые термической обработкой (имеющие концентрацию легирующих элементов свыше этого предела). К деформируемым сплавам, не упрочняемым термической обработкой, относятся технический алюминий АД1, АД, алюминиево-марганиевый сплав АМц (Аl + 1,3% Мg) и группа сплавов системы А1—Мg: АМг1, АМг2, АМг3 и АМг6. В сварных соединениях эти сплавы способны сохранять до 95% прочности основного металла при высокой пластичности и высокой коррозионной стойкости. Термически упрочняемые деформируемые алюминиевые сплавы могут быть разделены на несколько групп. 1. Дуралюмины — сплавы на основе системы А1—Сu—Мg: Д1, Д16, Д19, ВАД1, ВД17, М40, Д18. 2. Авиали — сплавы на основе системы А1— Мg—Si и А1—Сu—Мg—Si АВ, АД31, АД33, АД35, АК6, АК6-1, АК8. 3. Сплавы на основе системы А1—Сu—Мg—Fe—Ni: АК2, АК4, АК4-1. 4. Сплавы на основе системы А1—Сu—Мn: Д20, Д21 и ВАД23 (Al—Cu—Mn—Li—Cd) 5. Сплавы на основе системы Аl—Zn—Mg—Cu^ В93, В95, В96, В94. 6. Сплавы на основе системы А1—Мg—Zn: В92, В92Ц, АЦМ. Из перечисленных сплавов к свариваемым относятся: АД, АД1, АМц, АМг, АМг3, АМг5В, АМг6, АВ, АД31, АДЗЗ, АД35, М40, Д20, ВАД1, В92Ц. В сварочной ванне алюминиевые сплавы взаимодействуют с газами и шлаками. Металлургические особенности сварки алюминия и его сплавов определяются взаимодействием их с газами окружающей среды, интенсивностью испарения легирующих элементов, а также особенностями кристаллизации в условиях сварочного процесса. = 44,06*10 МПа. Образующаяся окись алюминия покрывает поверхность деталей плотней и прочной пленкой. При 20 С процессы окисления алюминия протекают по параболическому закону. Важной характеристикой окисной пленки алюминия является ее способность адсорбировать газы, в особенности водяной пар. Последний удерживается окисной пленкой до температуры плавления металла. Коэффициент теплового расширения окисной пленки почти в 3 раза меньше коэффициента расширения алюминия, поэтому при нагреве металла в ней образуются трещины. При наличии в алюминии легирующих добавок состав окисной пленки может существенно меняться. Возникающая сложная окисная пленка в большинстве случаев является более рыхлой, гигроскопичной и обладает худшими защитными свойствами. Окисная пленка на поверхности алюминия и его сплавов затрудняет процесс сварки. Обладая высокой температурой плавления (2050 С), окисная пленка не расплавляется в процессе сварки и покрывает металл прочной оболочкой, затрудняющей образование общей ванны. Вследствие высокой адсорбционной способности к газам и парам воды окисная пленка является источником газов, растворяющихся в металле, и косвенной причиной возникновения в нем несплошностей различного рода. Частицы окисной пленки, попавшие в ванну, а также часть пленок с поверхности основного металла, не разрушенных в процессе сварки, могут образовывать окисные включения в швах, снижающие свойства соединений и их работоспособность. Для осуществления сварки должны быть приняты меры по разрушению и удалению пленки и защите металла от повторного окисления. С этой целью используют специальные сварочные флюсы или сварку осуществляют в атмосфере инертных защитных газов. Вследствие большой химической прочности соединения А1 восстановление алюминия из окисла в условиях сварки практически невозможно. Не удается также связать А1 в прочные соединения сильной кислотой или основанием Поэтому действие флюсов для сварки алюминия основано на процессах растворения и смывания диспергированной окисной пленки расплавленным флюсом. В условиях электродуговой сварки в интертных защитных газах удаление окисной пленки происходит в результате электрических процессов, происходящих у катода (катодное распыление). В этих условиях возникает необходимость повышения требований к качеству предварительной обработки деталей перед сваркой с целью получения тонкой и однородной пленки по всей поверхности свариваемых кромок. Для предупреждения дополнительного окисления и засорения ванны окислами необходимо применять защитный газ высокой чистоты. Водород, в отличие от других газов, обладает способностью растворяться в алюминии и при определенных условиях образовывать поры в металле швов. Растворимость водорода в алюминии изменяется при различных температурах. Концентрация растворенного в металле водорода [Н] зависит от давления молекулярного водорода, находящегося с ним в равновесии. В реальных условиях парциальное давление молекулярного водорода в газовой фазе дуги ничтожно мало. Поэтому основным источником водорода, растворяющегося в сварочной ванне, является реакция взаимодействия влаги, содержащейся в окисной пленке с металлом. В результате протекания этой реакции концентрация атомарного водорода в поверхностном слое атмосферы, контактирующей с металлом, может соответствовать большому давлению молекулярного водорода, находящегося в равновесии с металлом. Поэтому при наличии паров воды в зоне ванны концентрация растворенного в металле водорода может оказаться намного больше равновесной. При охлаждении растворенный водород в связи с понижением растворимости стремится выделиться из металла. Пузыри выделяющегося водорода, не успевая всплыть из ванны, остаются в шве, образуя поры. Поэтому основной мерой борьбы с пористостью при сварке алюминия является снижение концентрации растворенного в нем водорода до предела ниже 0,69—0,7 см /100 г металла. Основным источником водорода, растворяющегося в металле шва при аргонодуговой сварке, является влага, адсорбированная поверхностью металла и входящая в состав окисной пленки в виде гидратированных окислов. Количество ее определяется состоянием поверхности металла и зависит от обработки его перед сваркой. Предупреждению пористости при сварке алюминия может способствовать сокращение удельной поверхности присадочной проволоки за счет увеличения ее диаметра и уменьшения доли участия присадочного металла в образовании шва. Рациональную обработку поверхности проволоки и основного металла применяют с целью уменьшения толщины окисной пленки и запаса имеющейся в ней влаги. Магний увеличивает растворимость водорода в алюминии, поэтому повышенная склонность к пористости при сварке алюминиево-магниевых сплавов объясняется другим механизмом образования пор. На поверхности сплавов, содержащих магний, присутствует окисная пленка, состоящая из окислов А1 и МgO. Такая пленка имеет большую толщину, меньшую плотность из-за дефектов ее строения и больший запас влаги, чем пленка из А1 . В процессе сварки при расплавлении основного и присадочного металлов часть влаги, содержащейся во внутренних дефектах пленки, не успевает прореагировать. Попадающие в ванну частицы пленки содержат остатки влаги, которая разлагается с выделением водорода. Образовавшийся водород в дефектах пленки переходит в молекулярную форму и затем выделяется в жидком металле ванны в виде пузырьков, минуя стадию растворения. При таком механизме образования пор в качестве мер уменьшения пористости, кроме обычных, связанных с применением рациональной обработки поверхности проволоки и основного металла, а также сокращения удельной поверхности проволоки, участвующей в образовании шва, эффективной мерой борьбы с пористостью становится ужесточение режимов. Однако при ужесточении режимов возникает опасность увеличения давления водорода в несплошностях, что затрудняет выполнение многослойных швов и подварку. Кристаллическая структура металла шва определяет его механические свойства. Чистый алюминий при кристаллизации обладает способностью образовывать в металле швов грубую крупнокристаллическую структуру. При сварке алюминиевых сплавов кристаллическая структура и механические свойства металла швов могут изменяться в зависимости от состава сплава, используемого присадочного металла, способов и режимов сварки. Для всех способов сварки характерно наличие больших скоростей охлаждения и направленного отвода тепла. При кристаллизации в этих условиях часто развивается дендритная ликвация, что приводит к появлению в структуре металла эвтектики. Эвтектика снижает пластичность и прочность металла. В связи с этим в швах возможно возникновение кристаллизационных трещин в процессе кристаллизации. Улучшение кристаллической структуры металла швов при сварке алюминия и некоторых его сплавов может быть достигнуто модифицированием в процессе сварки. Поэтому в качестве присадочного металла при сварке все большее применение находят специальные проволоки с добавками модификаторов. Введение этих элементов в небольших количествах позволяет улучшить кристаллическую структуру металла швов и снизить их склонность к трещинообразованию. Перемешивание металла сварочной ванны в процессе сварки с помощью внешнего магнитного поля также снижает склонность металла швов к трещинообразованию. При выборе присадочного металла следует также учитывать возможность появления в структуре металла швов различных химических соединений. При сварке сплавов алюминия, содержащих магний, с применением присадочной проволоки, содержащей кремний, в металле швов и особенное зоне сплавления появляются иглообразные выделения Мg Si, снижающие пластические свойства сварных соединений. Неблагоприятно влияют на свойства соединений из сплавов системы А1—Мg ничтожно малые добавки натрия, которые могут попадать в металл шва через флюсы. Свойства сварных соединений зависят также от процессов, протекающих в околошовных зонах. При сварке чистого алюминия и сплавов, неупрочняемых термической обработкой, в зоне теплового воздействия наблюдается рост зерна и некоторое их разупрочнение, вызванное снятием нагартовки. Рост зерна и разупрочнение нагартованного металла при сварке изменяется в зависимости от способа сварки, режимов и степени предшествовавшей нагартовки сплава. Свариваемость сплавов А1—Мg осложняется повышенной чувствительностью их к нагреву и склонностью к образованию пористости и вспучиванию в участках основного металла, непосредственно примыкающих к шву. Способность этих сплавов образовывать пористость в зонах термического воздействия связывается с наличием в слитках молекулярного водорода. После обработки таких слитков (прессования или прокатки) в металле образуются несплошности в виде каналов или коллекторов, в которых водород находится под высоким давлением. Для проверки качества металла, предназначенного для сварки, рекомендуется проводить специальную пробу. При свар

 
 
Hosted by uCoz